幸运时时彩平台

运算放大器科普文章

2020-03-20来源: EEWORLD关键字:运算放大器  TI

幸运时时彩平台许多教材和参考指南将运算放大器(运放)定义为可以执行各种功能或操作(如放大、加法和减法)的专用集成电路(IC)。虽然我同意这个定义,但仍需注重芯片的输入引脚的电压。

 

当输入电压相等时,运算放大器通常在线性范围内工作,而运算放大器正是在线性范围内准确地执行上述功能。然而,运算放大器只能改变一个条件来使输入电压相等,即输出电压。因此,运算放大器的输出通常以某种方式连接到输入,这种通常被称为电压反馈。

 

在本文中,我将解释一个通用电压反馈运算放大器的基本操作,并请您参阅其他内容以了解更多信息。

 

图1描述了运算放大器的标准示意图符号。有两个输入端(IN+, IN-)、一个输出端(OUT)和两个电源端(V+, V-)。这些端的名称可能因制造商而异,甚至单个制造商也可能使用不同的名称,但它们仍然是相同的五个端。

 

幸运时时彩平台例如,您可能会看到Vcc或Vdd而不是V+。又或者,您可能会看到Vee或Vss而不是V-。电源端子的其他标签会有所不同,因为它们指的是器件内部的晶体管类型。例如,当在运算放大器内部使用双极结型晶体管(BJT)时,电源对应于BJT的集电极和发射极:Vcc和Vee。在运算放大器内部使用场效应晶体管(FET)时,电源标签与FET的漏极和源极相对应:Vdd和Vss。如今,许多运算放大器同时包含BJT和FET,因此V+和V-是常见的标签,与器件内部的晶体管无关。简言之,不要太在意引脚标签,只要理解它们的作用即可。

 

 

图1:通用型运算放大器示意图符号

 

等式1表示运算放大器的传递函数:

 

 

在等式1中,AOL被称为“开环增益”。在现代运算放大器中,它通常是一个非常大的值(120 dB或1,000,000 V/V)。例如,如果IN+和IN-之间的电压差仅为1mV,运算放大器将尝试输出1000V!在这种配置中,运算放大器不在线性区域内工作,因为输出不能使输入彼此相等(记住,理想情况下In+等于In-)。因此,运算放大器需要一种方法来控制开环增益,即通过负反馈来实现。

 

图2描述了作为反馈控制系统一部分的运算放大器。您会注意到输出OUT通过一个标记为ß的块反馈到负输入IN-。ß被称为反馈因子,通常使用电阻来降低输出电压。

 

 

图2:负反馈运算放大器

 

图3比较了开环运算放大器和负反馈运算放大器。这些TINA-TI™软件仿真电路采用的运放是近乎理想的运放,加了电源来限制输出电压。注意,对于左侧的开环配置,输出几乎等于正电源(V+)。这是因为输入引脚之间有一个很小的差异(100mV)。这种小电压被开环增益放大,开环增益会强制输出到其中一个电源电压。在图3右侧的负反馈或闭环电路中,运算放大器输出上的分压器需要200 mV的输出电压,以便使反相和同相输入相等。 

 

 

图3:开环(左)与负反馈(右)

 

输入电压的放大称为增益。它是反馈回路中电阻值的函数。等式2描述了图3中右边电路的增益方程,这就是所谓的同相放大器。您将看到计算出的输出电压与仿真相符。如果您想要了解有关此电路(以及其他常见的运算放大器电路,如缓冲器、同相放大器和差分放大器)的更多信息,您可以下载电子书“模拟工程师电路指南:放大器”。”

 

  

运算放大器的输出受到电源电压的限制。图4是图3中同相放大器的输出电压与输入电压的关系图。注意当输出接近正负电源时,输出由于饱和受限。

 

 

图4:同相放大器电路的输出与输入电压

 

由于这个限制,在图5中可以看到,随着输出接近电源,输入引脚之间的电压差Vdiff增加。只有当输入几乎相等时,运算放大器才在线性区域工作。

 

 

图5:同相放大器电路的Vdiff和IN+

 

为了更深入地了解运算放大器,请查看我们的模拟课程TI高精度实验室。本课程将深入探讨运算放大器,并讨论输入失调电压(Vos)、输入偏置电流(IB)和输入/输出限制等基本非理想因素。还有一些高级主题讲座,如运算放大器带宽(BW)、压摆率(SR)、噪声、共模抑制比(CMRR)、电源抑制比(PSRR)和稳定性。除了讲座之外,有些主题还包括动手实验。为了进行这些实验,您需要相应的运算放大器评估模块。

 

幸运时时彩平台如果您喜欢DIY一些电路,那么可能会对通用DIY放大器电路评估模块(用于单通道运放)、双通道通用DIY放大器电路评估(用于双通道运放)或DIP封装转换评估模块(可与标准的打样板或电路试验板一起使用)感兴趣。DIY-EVMs支持不同封装的运放,并具有许多标准运算放大器电路,如本文所述的同相放大器、反相放大器、缓冲器和滤波器(包括Sallen-Key和多反馈)。由于双列直插式封装(DIP)转换EVM可以将许多标准的表面贴装封装转换为DIP,以便与电路试验板一起使用,因此您可以评估任何配置的放大器。

 

这就是运算放大器的基本原理:只有当输入引脚的电压相等时,运算放大器才是线性的。然而,为了实现这一点,运算放大器只能调整其输出电压。输出摆幅限制会导致输入电压差增大,从而导致非线性。 


关键字:运算放大器  TI 编辑:muyan 引用地址:http://news.sonata9.com/dygl/ic492256.html 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:克服产品尺寸挑战,Qorvo全新电源管理IC产品问市
下一篇:更耐用更小型,ST独立VBUS供电控制器问市

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

低压运算放大器通过自举以实现高压信号和电源工作的应用
问题:能否让低压放大器自举来获得高压缓冲器?回答:您可以采用具有出色输入特性的运算放大器,并进一步提高其性能,使其电压范围、增益精度、压摆率和失真性能均优于原来的运算放大器。我曾设计过一个精密电压表的输入,需要一个亚皮安输入单位增益放大器/缓冲器,其低频噪声小于1μV p-p,失调电压低至大约100μV,非线性误差小于1 ppm。它还需要在音频和60 Hz频率下具有非常低的交流失真,以便利用不断增强的ADC分辨率。这足够雄心勃勃,但它同时需要使用±50 V电源缓冲±40 V信号。缓冲器输入连接到高阻抗分压器,或直接连接到外部信号。因此,它还必须能够承受静电放电和过压输入的冲击。可用的亚皮安偏置电流运算放大器并不多。可堪使用的器件
发表于 2020-03-11
低压运算放大器通过自举以实现高压信号和电源工作的应用
如何轻松稳定带感性开环输出阻抗的运算放大器
简介 一些运算放大器(运放)具有感性开环输出阻抗,稳定这一类运放可能比阻性输出阻抗的运算放大器更为复杂。最常用的技术之一是使用“断开环路”方法,这涉及到断开闭环电路的反馈环路和查看环路增益以确定相位裕度。一种鲜为人知的方法是使用不需要断开环路的闭环输出阻抗。在本文中,我将讨论如何使用闭环输出阻抗来稳定带阻性或感性开环输出阻抗的运算放大器。 等式1计算闭环输出阻抗Zout,它取决于开环输出阻抗Zo,开环增益Aol,和反馈系数B。方程1表明,随着Aol的减小,Zout增加: Zout = Zo/(1 + Aol*B)(1) 闭环输出阻抗可以是阻性、感性和双感性的,这取决于开环
发表于 2020-02-26
如何轻松稳定带感性开环输出阻抗的运算放大器
技术文章—采用“系列优先”的方法进行运算放大器设计
当我第一次光顾德克萨斯的一家烧烤店时,菜单上各式各样的肉让我感到非常惊讶,以至于我不知道要选哪一种。但幸运的是,烧烤店提供了三种肉的拼盘,因而我可以尝一下不同种类的肉。 其实,作为一个寻求运算放大器(op amp)的设计工程师,您也可以有很多选择。另外,随着如今生产周期不断缩短,您需要快速做出决定。选择了错误的运算放大器可能会耗费时间和金钱。 TI丰富的产品组合由48个独特的放大器组成(包括新的TLV9001、TLV9052、TLV9064),提供了16种不同的封装,其中包括业内最小的单通道和四通道封装。在此技术文章中,您将了解到此新的运算放大器系列如何满足各种项目需要,减少印刷电路板(PCB)的空间,并提
发表于 2019-12-27
技术文章—采用“系列优先”的方法进行运算放大器设计
从220V高性能精密运算放大器入手,正确了解高压运放的应用
大部分工程师大概没有多少机会应用到高压(60V至100V以上)运算放大器,但实际上在很多应用中由于输入信号性质或输出负载特征的要求,需要运算放大器在高电压范围内工作。这类应用包括喷墨打印机和3D打印机中的压电驱动器、超声波变送器及其他医疗器械、ATE驱动器和电场源等。 以业界首款220V高性能精密运算放大器ADHV4702-1为例,这款ADI公司推出的放大器可以帮助工程师解决多个设计难题,用于多种不同应用,例如自动化测试设备、生命科学和医疗保健等:在自动化测试设备应用中,该器件可用于测量高压侧的电流,以及生成精准的高压电源;在生命科学领域,本产品可以对质谱系统实施精准的高压控制;在医疗应用中,可用于准确控制硅光电
发表于 2019-11-22
从220V高性能精密运算放大器入手,正确了解高压运放的应用
应该如何才能处理振荡运算放大器
鉴于反馈通路中相移(或者称作延迟)引起的诸多问题,我们一直在追求运算放大器的稳定性。通过上周的讨论我们知道,电容性负载稳定性是一个棘手的问题。如果受反馈网络电阻影响的运算放大器输入电容(加上一些杂散电容)形成的相移或者延迟过大,则简易非反相放大器便会不稳定,或者出现大量过冲和振铃。您可以通过减少该节点的杂散电容来获得一定的改善,其可以最小化这种连接的电路板线路面积。使用某个特定的运算放大器时,输入电容(差分电容+共模电容)为固定值—您会受到它的束缚。但是,您可以按比例减小反馈网络的电阻值,以保持增益不变。这样可将该电容所产生的极点频率移至更高频率,并减小延迟时间常量。本例中,我们将电阻减小至 5kΩ 和 10kΩ,获得了
发表于 2019-11-18
应该如何才能处理振荡运算放大器
机器人设计,让你的脑子活起来
翻译自——embedded 如果大学导师让你用所学的脉宽调制控制理论让机器人尽可能快地从迷宫的一端移动到另一端,你会不会一脸茫然的看和他。 我每天在和机器人打交道,这就是我所做的。两年前,我帮助德州仪器公司(Texas Instruments)为大学课堂开发了一套名为TI robotics System Learning kit (TI-RSLK)的机器人工具包系列,旨在教授嵌入式系统和应用程序,作为大多数电气和计算机工程课程中常见的一门课程。 TI-RSLK学习工具包的目标是在开发集成任何电子系统的硬件和软件组件的熟练程度的同时提供实践经验。它是一款低成本的机器人套件和课程教具,可以帮助学生更深
发表于 2020-03-04
机器人设计,让你的脑子活起来
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 sonata9.com, Inc. All rights reserved
幸运时时彩开奖结果 内蒙古快3计划 500万彩票 幸运时时彩 大资本平台 奔驰彩票开奖 一分时时彩官网 500彩票网 幸运时时彩 亿信彩票平台